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Abstract: In industrial practice, most products are produced by processes that involve multiple stages.  

In studying multistage processes via designed experiments, some practitioners treat them as single-stage 

processes and follow the usual factorial designs or split-plot designs. In this paper, through an analysis of  

the error transmission mechanism, we propose a mixed-effect model for analyzing experiments with 

multistage processes. Based on an analysis of  simulated and real experimental data, we find that different 

conclusions about factor significance may be drawn if  the data are analyzed differently. In addition, the 

mixed-effect model can help separate errors at different stages and hence provide more information on 

process improvement. 
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1. Introduction 

esign of experiments (DOE) is an efficient and widely used technique for process 

investigation, data collection and model building. In a controlled experiment, the 

process to be studied is treated as a black box; controllable factors, such as 1x  and 2x , 

that may affect the process output y  are identified first and then are changed manually 

according to a design matrix. Figure 1(a) shows a diagram that represents the general 

scenario of experimental design: all of the factors are treated equally, and the impacts of the 

factors are applied to the process simultaneously. 

However, in some processes, the factors are physically positioned at different stages, as 

Figure 1(b) shows. Compared to the process in Figure 1(a), the process in Figure 1(b) has 

two distinct features: first, there is a distinct difference in terms of the time or location of 

the factors. In Figure 1(b), factor 1x  functions first at stage 1, while the second factor, 2x , 

functions at a later stage, after the effect of 1x  on 'y , which is unobservable in practice.  

Second, a new interaction structure is presented in the process. With the variation 

propagating from upstream stages to downstream stages, the error term from stage 1, ' , 

enters stage 2 and may interact with 2x , while it is physically impossible for the 

disturbance at stage 2,  , to move backward to interact with 1x . 

The process in Figure 1(b) is a typical multistage manufacturing system (MMS). An 

MMS is a process that consists of more than one stage (or work station). In an MMS, each 

product moves through multiple manufacturing stages, there are controllable factors at 

each stage, and the accumulated effect of the factors is embedded in the final quality of the 

product. Because it is difficult to finish a product in a single operation, nearly all products 
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are produced by an MMS. For example, a semiconductor manufacturing process for 

producing integrated circuits (ICs) usually involves hundreds of stages (Mee and Bates [10]). 

A process for making a car also has dozens of stages (Shi [15]). Wu and Hamada [18] 

introduced a soap bar example consisting of two sub-processes: mixing and forming. The 

output of a multistage process is not a simple summation of all the individual stages; rather, 

control actions taken at later stages may interfere with the results of actions performed at 

earlier stages (Zhong et al. [21]). 

 

   

(a)          (b) 

Figure 1. General model for a single-stage and two-stage process. 

 

A considerable amount of research has been carried out on the modeling, monitoring 

and control of MMSs. Jin and Shi [6] developed a state-space model to characterize the 

variation propagation of a sheet metal assembly process in automobile production. Yao 

and Gao [19] suggested that a multistage process may be divided into blocks for model 

building. Li and Zhou [8] presented a robust variation source identification method for 

quality improvement in manufacturing processes, assuming a linear relationship between 

the variation sources. Gaver et al. [5] studied the reliability growth of a multistage system. 

Shi and Zhou [16] presented a survey of recent research into the modeling, monitoring, 

diagnosis, and control of multistage processes. Zi et al. [22] presented examples on 

monitoring a multistage process. However, research on the design and analysis of 

experiments for multistage processes is still limited. 

 

 

Figure 2. The multistage nature of  the coffee cream-making 
process introduced by Schoen et al. [13]. 
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To study a multistage process, it is preferable that each stage is studied individually if 

the intermediate response variables are observable, so that the physical mechanism of the 

engineering process is easier to understand. If such intermediate observations are difficult 

or impossible, the typical current practice is to treat the multiple stages as a single process.  

For example, Schoen et al. [13] studied a process for making coffee cream. The whole 

process consists of four consecutive stages. Nine controllable factors are identified in total, 

with two factors at the first stage, three at the second stage, one at the third stage and two at 

the last stage, as shown in Figure 2. The authors classified these factors as being easy to 

change or hard to change and then used a split-plot design to study the process. 

As another example, Schoen [14] introduced a wood construction experiment 

involving 6 factors. The construction process has six stages: sawing, immersing, 

pretreatment, gluing, press, and storage. Again, the author treated the six-step process as a 

single stage and ignored the successive effects of the factors. 

 

 
Figure 3. The multistage nature of  the wood construction 
experiment introduced by Schoen [14]. 

 

In a later section of this paper, we examine a wafer-rinsing process. The process is 

designed to improve the smoothness of lapped wafers in semiconductor manufacturing.  

In this process, each wafer moves through several tanks sequentially. Each tank has its own 

factors, such as solution density and time. The wafers cannot be measured until they are 

treated in all tanks. A designed experiment is needed to study this process and optimize the 

settings of each tank. Conventionally, the tanks could be treated as one “big tank” with the 

factors of all the tanks being treated as equal. However, this approach obviously ignores the 

multistage nature of the process and may reduce the efficiency of the data analysis. The 

experiment is introduced in greater detail later. We also show the differences if the same 

experiment is analyzed in different ways. 

Because the multistage nature of processes is widely observed, the design and analysis 

of experiments for multistage processes become important in practice. To optimize a 

multistage process, it is critical to collect data from the process efficiently and analyze the 

data appropriately. DOE is an important way to help identify significant factors in a 

process and construct statistical models to express the relationships between process output 

and input variables. 

In the literature, some researchers have noticed the unique nature of multistage 

processes and have proposed ways to design and run experiments more efficiently at lower 
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costs. For example, Miller [11] presented a laundry example with two stages: clothes need 

to go through washing and drying machines. The washing and drying steps obviously 

happen in sequence. Miller proposed the use of a strip-lot design (Mee and Bates [10] called 

this a two-way split-unit design) to reduce the resources needed for the experiment. Mee 

and Bates [10] presented an example of IC fabrication: wafers move through many 

manufacturing steps in their production. The authors suggested the use of multi-way 

split-lot designs. The name comes from the fact that in semiconductor manufacturing, 

wafers are processed in lots (batches). A split-lot design can be considered a typical design 

with incomplete blocks in which some main effects are confounded with blocking effects 

(see Section 3.5 of Mee [9]). Instead of using a fixed lot, Mee and Bates [10] suggested 

removal of the restriction of separate replicates so that a higher degree of randomization is 

achieved. Yuangyai et al. [20] proposed a robust parameter design method for a multistage 

process. However, they did not provide details regarding how the experiment should be 

analyzed; rather, they suggested methods for analyzing linear models for full-factorial 

split-plot designs. 

Butler [2] suggested that split-lot designs are potentially useful for multistage processes. 

In such a design, each stage has a split-plot structure. This has the same implication as the 

multi-way split-unit design proposed by Taguchi [17]. Butler [2] also mentioned that a 

split-lot design with two stages is equivalent to a strip-plot design as described by Miller [11] 

and provided guidelines for constructing two-level split-lot fractional factorial designs for 

multistage processes. However, these studies only focused on the design of experiments for 

multistage processes; they did not emphasize the analysis of the experiments. 

Alternatively, Schoen et al. [13] treated the experiment for a multistage process as a 

split-plot design. A split-plot experiment (which is referred to as a split-unit experiment in 

chapter 9 of Ryan [12]) is a blocked experiment in which blocks are formed with 

hard-to-change factors. Complete randomization is only implemented within subplots. If 

an experiment involves factors that are hard to change, it is a natural choice to adjust the 

hard-to-change factors less frequently (Mee and Bates [10]). In a split-plot design, hard- 

to-change factors are treated as whole-plot factors. The levels of a whole-plot factor are first 

randomized, and then the levels of the split-plot factors (easy-to-change factors) are 

randomized under each level of the whole-plot factor (Jones and Nachtsheim [7]). As 

Anbari and Lucas [1] noted, split-plot designs are widely used because of their accuracy, 

efficiency and low cost. 

The purposes of this paper are to investigate the variation propagation mechanism in 

experiments for multistage processes and to propose a mixed-effect model for analyzing 

data collected from multistage processes. The remainder of this paper is organized as 

follows. Section 2 establishes a mixed-effect model for experiments with multistage 

processes. In Section 3, different model strategies for the experiments are studied. In 

Section 4, a comparison of the different modeling strategies are carried out based on 

simulated and real data. Lastly, Section 5 concludes with suggestions for future research. 

2. A Mixed-Effect Model for Characterizing the Output of a Multistage Process 

To better understand the data collected from DOE for a multistage process, we first try 

to capture the behavior of the process using a statistical model. For simplicity, we focus on 

a two-stage process that is similar to the one shown in Figure 1(b). There are 1S  factors at 

the first stage and 2S  factors at the second stage. The intermediate invisible output of the 

first stage, 'y , is given as follows: 
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1
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1 , ' 1: ; '

' ' ',
S

i i ii i i
i i i S i i

y a b x b x x 
  

                (1) 

where 1a , 1ib , and 1 '' iib  are the intercept and coefficients of the factors and their 

interactions.  The first stage is assumed to have a normally distributed disturbance, 
2
1' ~ (0, )N  . 

In Equation (1), each interaction effect can be observed as a new factor (for example, 

we can define 3 1 2x x x ). Because the focus of this paper is the study of the multistage 

nature of a process, to simplify the equations and their explanation, in the following, we 

hide all interaction effects of the factors at the same stage from the model. However, these 

effects could easily be added to the model, and all derivations still hold. 

In a multistage process, the output of the upstream stages becomes the input of the 

downstream stages. In the two-stage process, the output of the second stage is therefore 

given by the following expression: 

 
2 2

2 2 2 2
1 1

' ' ,
S S

j j j j
j j

y a b x ky c x y 
 

                         (2) 

where k  is the magnificent coefficient of 'y  on y  and ic  is the coefficient of the 

interaction between the factors at the second stage, 2ix , and the output of the first stage, 

'y . Again, the second stage itself is also affected by a normally distributed disturbance,  , 

and 2
2~ (0, )N  . Substituting Equation (1) for 'y  in Equation (2), we obtain the 

following expression: 
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  (3) 

where   reflect the effects of the factors and interactions; 0  is the stage-specific random 

effect, which is rooted in the transmission of the error at stage 1 to stage 2 and only appears 

in a multistage model; 1 j  is the random effect due to the interaction between the factors 

at the second stage and the propagated errors from the first stage, and 

0 1

2 2 2
0 1~ (0, ),  ~ (0, ),  ~ (0, )

iiN N N       . 

Equation (3) shows the components of the output of a multistage process. First, the 

output has several fixed effects, including the intercept and the main effects. Second, the 

output is also affected by the random effects in the system. Specifically, 0  is the effect of 

the error passing through from the first stage, and 1  is the interaction between the same 

error passing through from the first stage and the factors at the second stage. Third, the 

disturbance of the second stage is the global error shown directly in y . 

Equation (3) can be observed as a special form of a mixed-effect model. The general 

form of the mixed-effect model is as follows (Fox [4]): 

,i i i i i i  y X β Z τ ε  2 ~ ( , )i qτ N 0 ψ , 2
n ~ ( , ).
ii iε N 0 Λ  
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In a multistage experiment, the special structure of the Z  matrix is determined by the 

design matrix and the run order. In the following section, we examine several specific 

design scenarios and analyze the data based on the mixed-effect model. 

If the multistage process is wrongly treated as a single-stage process, the model for the 

output would be expressed as follows: 

1 2 2 1

0 1 1 2 2 1 2
1 1 1 1

'',
S S S S

i i j j ij i j
i j j i

y x x x x    
   

                    (4) 

where ''  represented the effect of the two disturbance sources in the process. Compared 

with Equation (3), the random effects are missing, which may lead to an inaccurate 

estimation of the effects and erroneous conclusions about the factor significance.  

Simulated and real examples are presented later to show the difference between these 

models. 

If the design is treated as a split-plot design, the model would be expressed as follows 

(see Jones and Nachtsheim [7]): 

 
1 2 2 1

0 1 1 2 2 1 2 0
1 1 1 1

'',
S S S S

i i j j ij i j
i j j i

y x x x x     
   

                    (5) 

where 0  is a random effect corresponding to the whole plot error in the split-plot design, 

rooted in the transmitted error of stage 1 to stage 2 in Equation (3). Obviously, this 

formulation does not consider the interaction effect between the transmitted error and the 

factors at stage 2. 

The formulation in Equation (3) is also different from the model presented by Miller 

[11], in which the transmission and propagation of errors were also missing. In the 

following section, we apply the above formulation to different DOE scenarios and study 

how the experiments should be analyzed if the multistage nature is to be appropriately 

considered. 

3. Modeling Strategies of Experiments for Multistage Processes 

When dealing with experiments for multistage processes, the unique error 

transmission mechanism makes the modeling of the experiment different. In practice, some 

practitioners may ignore the multistage nature of the process and treat it as a typical 

factorial design. Some may analyze the experiment as a split-plot experiment. In the 

following section, for illustration purposes, we study a simple process with two stages.  

Different experimental design schemes are applied to the process. For each design, we then 

apply different modeling strategies and compare their differences. 

3.1. Unreplicated Experiments with Two Factors 

In the first scenario, we assume that in the two-stage process, each stage has a single 

controllable factor. Therefore, the process has two factors in total. Four experimental runs 

are used to study this process. The experiment could be treated in four different ways: (a) 

with a simple randomized factorial design, (b) with a randomized factorial design with 

consideration of the multistage nature, (c) with a split-plot design or (d) with a split-plot 

design with consideration of the multistage nature. We will show the model for each way 

of treating the experiment and compare the differences. 
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3.1.1. Modeling as a Single-Stage Randomized Factorial Design 

In practice, some practitioners may simply treat an experiment for a multistage process 

as they would a factorial experiment for a single-stage process. In such a case, an 

unreplicated 22  full factorial design would be modeled as follows: 

 

01 1 2 1 2 1
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      
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y                (6) 

The covariance matrix of y  is expressed as follows: 
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                           (7) 

In this modeling framework, the two-stage process is treated as a black box on the whole. 

The errors of the two stages are not separable. 

3.1.2. Modeling as a Multistage Randomized Design 

Following the multistage model in Equation (3), if the multistage nature is considered 

for the completely randomized experiment, the observations of the four runs are modeled 

in the following way: 
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         (8) 

and 2 2~ (0, ),  0,1; 1,...,4,  ~ (0, ),  1,...,4,
iij iN i j N i      where 0  represents the 

random effect of the transmitted error from stage 1 to stage 2 and 1  represents the 

random effect of the interactions between the stage-1 error and stage-2 factors. If the 

experiment is treated as completely randomized, an identity matrix should be used in front 

of the 0  vector. 

Compared to Equation (6), the fixed effects of the factors are the same, while Equation 

(8) gives a better explanation of the random errors of the experiment. With the coded factor 

levels, 1ix   , 1ix    , the random effects are confounded. The covariance matrix of the 

observational vector becomes the following: 
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where  

 
0 1

2 2 2 2 .total         

The variation of each observation is the same. The random effect cannot be separated from 

the disturbance due to the way the experiment is conducted. Therefore, if the experiment is 

carried out in a totally random order, the modeling strategies with and without 

consideration of the multistage nature are the same. 

3.1.3. Modeling as a Single-Stage Split-Plot Design 

When doing experiments for a multistage process, it is common and natural to treat 

the factors of one stage as hard-to-change factors to minimize costs (Mee and Bates [10]).  

In such a case, the experiment would have a split-plot structure. 

  

Table 1. A 22  split-plot design. 

Run Order 1x  2x  

1 
 

 

2  
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4  

 

Suppose the two-stage process is inaccurately considered as a single-stage process and 

the experiment is conducted following the split-plot design shown in Table 1, i.e., factor 1x  

is the whole-plot factor, and 2x  is randomized under 1x . The output of the experiment is 

then modeled as follows: 
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y          (10) 

and 2~ (0, )
ww N   , ~ (0, )N   where w  is the whole-plot random effect and   is the 

experiment error of the whole system. Because the first two runs are carried out under the 

same and unchanged setting of 1x , these two runs share a common random effect; 

similarly, the second two runs share another random effect. In this design, the covariance 

matrix of the output becomes the following: 
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             (11) 

The split-plot model does not take the interaction between the first-stage error and the 

second-stage factors into account. Due to the restricted randomization, the random effect 

and the random error are now separable. Section 4 present example experiments and shows 

how to analyze such experiments.  

3.1.4. Modeling as a Multistage Split-Plot Design 

The formulation in Equation (10) does not consider the multistage nature of the 

experiment. If the multistage nature is taken into consideration, the output should be 

modeled as follows: 
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 (12) 

where w  represents the random effect of the whole plot and 1  represents the random 

effect between the factors at the second stage and the transmitted error from the first stage.   

In Equation (12), the random effects 
0

2
  and 

1

2
  are now separable because the 

design matrices in front of w  and 1  are not identical.   

The above analysis shows that for the same experiment, if the assumption about the 

way the data were collected changes, the model changes accordingly. The model is 

considered correct only if the assumption and model structure correctly reflect the way the 

experiment was carried out. 

3.2. Unreplicated Experiments with Three Factors 

In this section, we will consider a multistage process with three factors. In a 

single-stage process, an increase in the factor numbers does not change the model structure, 

but this is no longer true in a multistage process. Suppose the number of factors is increased 

from 2 to 3, and an unreplicated 32  design is carried out. In the following, we show how 

this experiment shall be modeled. 

3.2.1. Modeling as a Randomized Factorial Design 

If the experiment is considered a full factorial design with a single-stage process, when 

the number of factors increases, the output of the experiment is modeled in a manner 

similar to that shown in Equation (6): 
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                (13) 

The effects of all factors can be estimated as usual.   

3.2.2. Modeling as a Randomized Multistage Design  

If the experiment is modeled with its multistage nature taken into consideration, the 

model structure depends on the stage in which the third factor appears. If the factor is 

added to the first stage, the model becomes the following: 
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    (14) 

Compared with Equation (8), this model structure is the same, except that the 

dimension becomes higher. If the third factor appears at the second stage, the number of 

random effects increases because the interactions between the first-stage error and the 

factors at the second stage increase. The output now can be expressed as follows: 
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Therefore, the modeling structure of a multistage process, as opposed to that of a 

single-stage process, depends on the location of the factors, because the multistage structure 

of the process makes the roles of the factors different. The factors at a downstream stage 

interact with the errors transmitted from the upstream stages, making the relationships 

among the factors complicated. 

3.2.3. Modeling as a Split-Plot Design 

The split-plot design is also sensitive to new factors. If a new factor is added to the first 

stage, the number of whole-plot blocks will increase. The output of the experiment is now 

modeled as follows: 
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and the covariance matrix of y  becomes the following: 
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We see in Equation (17) that there are more “blocks” than in the matrix in Equation (11).  

These blocks correspond to the whole-plot random effects in the experiment. 

In the split-plot design, if the new factor is added to the second stage, the number of 

whole-plots does not change, so, the output is expressed as follows: 
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The covariance matrix now becomes the following: 
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A new factor at the second stage does not change the number of blocks, but it increases 

the number of runs in each block. This again shows that an experiment with a multistage 

process is rather different from an experiment with a single-stage process. If the multistage 

process is wrongly treated as a single-stage process, erroneous conclusions may be drawn 

from the analysis. 

3.2.4. Modeling as a Multistage Split-Plot Design 

For the split-plot design, if the third factor appears at the first stage, the experiment 

will be modeled as follows: 
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(20) 
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Compared with Equation (12), we can see that the number of blocks has increased, 

while the number of runs in each block remains the same. 

If the new factor appears at the second stage, as in the case of a split-plot design, the 

number of whole-plot blocks remains the same, but the number of random effects of the 

interactions between the new factors and the first-stage error increases: 
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.(21) 

3.3. Replicated Experiments with Two Factors 

Replication is a basic means of improving estimation accuracy in experimental design.  

In this section, we study a case in which the experiment is carried out with replicates. We 

want to see how different the models may become. The process still has two stages, with 

one factor at each stage. 

If the experiment is totally randomized within each replicate and is modeled as a 

factorial design, the model structure is similar to that shown in Equation (6), except that 

more observations are included. If the experiment is modeled as a multistage design, the 

model structure is similar to that shown in Equation (8). In both cases, in a manner similar 

to that discussed in Section 3.1.1, only the main effects can be estimated. Therefore, in the 

following section, we only focus on the cases in which the split-plot design is used. 

3.3.1. Modeling as a Split-Plot Design 

Replication in a split-plot design adds another blocking factor to the model. The 

structure of the experiment is shown in Table 2. 

The model of the split-plot design with replication is a slightly different from that 

shown in Equation (10). With the blocking factor B  being considered, the output of the 

experiment is given as follows: 
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   (22) 

Now, we see a new factor “block” in the model, and more blocks in the matrix correspond 

to the random effects. 



504                                                                       Wang and Dai 

Table 2. A 22  replicated split-plot design. 

 Replicate A Replicate B 

Factors 
1x  

2x  
1x  

2x  

1     
2     
3     
4     

 

3.3.2. Modeling as a Multistage Split-Plot Design 

If the multistage nature of the process is considered, the replication in the design 

increases the number of whole plots and adds the effect of blocking into the model: 
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    (23) 

We see that compared to Equation (12), there is an extra blocking effect, while the metrics 

corresponding to the random effects have larger dimensions. 

4. A Comparison of Different Modeling Strategies 

In this section, we first apply the different modeling techniques to a set of simulated 

data and compare their performance. Then, a real case study is presented using data from a 

wafer fabrication process. 

4.1. A Simulated Example 

We first use simulated data to see whether the model is able to identify the factors and 

the sources of variation correctly. We assume a two-stage system with one factor at each 

stage. The experiment has 8 blocks and 32 runs in total. 

We assume that the first stage of the simulated process is dominated by the following 

model: 

1' 10 5 'y x    , 
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where ' ~ (0,1)N  is the experiment error. A random effect is also added to 'y  to 

simulate the blocking effect. Stage 2 is assumed to follow the following model form: 

2 210 ' 'y x y y x     , 

where ~ (0,1)N , which is equivalent to the following: 

1 2 1 2 210 5 20 5 ' 'y x x x x x          . 

The simulated data are shown in Table 3.  
 

Table 3. A simulated experiment. 

Run order Replicate 1x  'y  2x  y  

1 1 1 15.24119 1 41.18 

2 1 1 15.24119 -1 -10.77 

3 1 -1 3.767793 1 17.72 

4 1 -1 3.767793 -1 -10.29 

5 2 1 15.82919 1 40.36 

6 2 1 15.82919 -1 -9.230 

7 2 -1 3.780316 1 17.56 

8 2 -1 3.780316 -1 -10.72 

9 3 1 14.74322 1 40.79 

10 3 1 14.74322 -1 -8.680 

11 3 -1 3.742470 1 16.62 

12 3 -1 3.742470 -1 -10.54 

13 4 1 16.33879 1 44.07 

14 4 1 16.33879 -1 -11.20 

15 4 -1 4.440861 1 17.14 

16 4 -1 4.440861 -1 -11.59 

17 5 1 15.58961 1 41.52 

18 5 1 15.58961 -1 -9.030 

19 5 -1 4.729086 1 20.82 

20 5 -1 4.729086 -1 -9.280 

21 6 1 14.23056 1 37.35 

22 6 1 14.23056 -1 -7.920 

23 6 -1 3.591119 1 17.72 

24 6 -1 3.591119 -1 -11.00 

25 7 1 15.83576 1 42.96 

26 7 1 15.83576 -1 -12.21 

27 7 -1 5.456556 1 18.56 

28 7 -1 5.456556 -1 -8.710 

29 8 1 13.95306 1 38.65 

30 8 1 13.95306 -1 -9.980 

31 8 -1 4.329408 1 19.10 

32 8 -1 4.329408 -1 -9.860 

 

The following R code is used to prepare the data for further analysis: 

 response=c(41.18,-10.77,17.72,-10.29,40.36,-9.23,17.56,-10.72,40.79,-8.68,16.62,-10.54,

44.07,-11.20,17.14,-11.59,41.52,-9.03,20.82,-9.28,37.35,-7.92,17.72,-11.00,42.96,-12.21,

18.56,-8.71,38.65,-9.98,19.10,-9.86) 
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 block=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8) 

 x1=c(1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1) 

 x2=c(1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1) 

 simdata=data.frame(response=response, x1=x1,x2=x2,block=block) 

In the following section, three different models are used to analyze the data. 

4.1.1. Modeling as a Randomized Factorial Design  

If the experiment is treated as a randomized factorial design, the data are analyzed as 

follows: 

 model1=lm(response~ x1*x2, data= simdata) 

 summary(model) 

The output of the above code is shown in Figure 4. The estimated intercept and coefficients 

of 1x  and 2x  and the interaction are close to the true parameters used in the simulation 

(the parameters are 10, 5, 20 and 5, respectively, in the simulation). However, the model 

can only estimate the total error as 1.53. 
 

Call: 

lm(formula = response ~ x1 * x2, data = test) 

 

Coefficients: 

            Estimate Std. Error  t value  Pr(>|t|)     

(Intercept)    9.7222     0.2704   35.95   <2e-16  

x1            5.7691     0.2704   21.33   <2e-16  

x2           19.7853     0.2704   73.17   <2e-16  

x1:x2         5.5834     0.2704   20.65   <2e-16  
 

Residual standard error: 1.53 on 28 degrees of freedom 

Multiple R-squared: 0.9955,     Adjusted R-squared: 0.9951  

F-statistic:  2078 on 3 and 28 DF,  p-value: < 2.2e-16 

Figure 4. Model summary when the experiment is analyzed as a factorial design. 
 

Linear mixed-effect model fit by REML 

Data: test  

       AIC      BIC    logLik 

  131.1271     140.4526  -58.56357 

 

Random effects: 

Formula: ~1 | block 

        (Intercept) 

StdDev: 3.35086e-05 

 

Formula: ~1 | x1 %in% block 

         (Intercept) Residual 

StdDev: 3.765274e-05  1.52969 

 

Fixed effects: response ~ x1 * x2  

                Value Std.Error DF   t-value    p-value 

(Intercept)   9.722188 0.2704135 14  35.95304       0 

x1           5.769062 0.2704135  7  21.33422       0 
x2          19.785313 0.2704135 14  73.16687       0 
x1:x2        5.583437 0.2704135 14  20.64777       0 

Figure 5. Model summary when the experiment is analyzed as a split-plot design. 
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4.1.2. Modeling as a Split-Plot Design 

If the same experiment is treated as a split-plot design, the following code can be used 

to analyze the data: 

 library(nlme) 

 model2=lme(response~x1*x2,data=simdata, 

random=list(block=pdDiag(~1),x1=pdDiag(~1))) 

 summary(model2) 

The restricted maximum likelihood (REML) algorithm is used for this model. The 

output is given in Figure 5. The estimates of the intercept and coefficients are nearly the 

same as those shown in Figure 4. All the factors are identified. One significant difference is 

that the split-plot design can separate and estimate the error of each single stage (the 

whole-plot factor and the sub-plot factor). However, the estimate of the first-stage error is 

much smaller than its true value, although the second-stage error is estimated to be 1.53, 

which is quite close to the value in the factorial design in Figure 4. 

4.1.3. Modeling as a Multistage Split-Plot Design 

Alternatively, if the multistage nature of the process is taken into consideration, we 

can analyze the same dataset as follows: 

 library(nlme) 

 model3=lme(response~x1*x2,data=simdata, 

random=list(block=pdDiag(~1),x1=pdDiag(~x2))) 

 summary(model3) 

The results are shown in Figure 6. Once again, the estimates of the coefficients are 

nearly the same. The block does not affect the response either. However, it is clearly that 

this model can separate the errors from both stages more precisely. 

 
Linear mixed-effect model fit by REML 

Data: test  

       AIC      BIC    logLik 

  131.7819   142.4395  -57.89094 
 

Random effects: 

Formula: ~1 | block 

         (Intercept) 

StdDev: 0.0001030876 

 

Formula: ~x2 | x1 %in% block 

Structure: Diagonal 

        (Intercept)       x2   Residual 

StdDev:   0.9027694 1.234197  0.04136634 

 

Fixed effects: response ~ x1 * x2 

                Value Std.Error DF   t-value     p-value 
(Intercept)   9.722187 0.2258108 14  43.05457       0 

x1           5.769063 0.2258108  7  25.54821       0 

x2          19.785312 0.3086359 14  64.10568       0 

x1:x2        5.583438 0.3086359 14  18.09070       0 

Figure 6. Model summary when the experiment is analyzed as a multistage split-plot design. 
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4.2. Case Study 

We next use the wafer rinsing process as an example. In the silicon chip production 

system, the cleanness and roughness of the surface could significantly affect the quality and 

failure rate of the final product. A multi-cavity rinsing device is used to remove the grain, 

metal contamination, organic contamination and oxidation film from the wafers (Cady and 

Varadarajan [3]). The process has two stages, with different solutions used at each stage. 

The density of the solution and the time spent at each stage may affect the rinsing effect. 

Therefore, in this experiment, four factors, the solution density at stage 1 (
1x ), the rinsing 

time at stage 1 (
2x ), the solution density at stage 2 (

3x ) and the rinsing time at stage 2 (
4x ) 

are studied. The response variable is the cleanness of the finished wafer, which is measured 

by the amount of metal ion left on the wafer surface. Considering the limitations of time 

and cost, 16 runs were conducted in the experiment. 

As illustrated in the previous section, we may analyze the experiment as a factorial 

design, a split-plot design, or a multistage split-plot design. The data and the R code used to 

analyze the experiment are shown in Appendix A, and the summary of the three models 

are presented in Appendix B. If the experiment is analyzed as a single-stage factorial design, 

after removing all insignificant two-factor interactions, we noticed that factors 2x  and 4x  

are significant in this model (using 0.10   here and later); if the experiment is analyzed 

as a split-plot design, only the factor 4x  is significant. If the experiment is analyzed as a 

multistage split-plot design, both 3x  and 4x  are significant. In addition, this model can 

estimate all the random effects and show that the variability of the first stage is small and 

the variability of the second stage is much larger. This piece of information is important to 

further process diagnosis and improvement. 

5. Conclusions 

Multistage processes are widely observed in industrial processes. When designed 

experiments are conducted with a multistage process, it is crucial to consider the nature of 

the data generation process in the analysis of the data. 

In this paper, we develop a mixed-effect model for analyzing experiments with 

multistage processes. Compared with cases in which an experiment is wrongly analyzed as 

a factorial design or a single-stage split-plot design, the proposed model can identify the 

random effects caused by the transmission of errors from upstream stages. If the experiment 

is correctly designed, the mixed-effect model can also separate the errors associated with 

the multiple stages and provide information for further process improvement. Performance 

studies based on simulated data and real data show that if the same experiment is modeled 

in different ways, different conclusions about factor significance may be drawn. 

Because multistage processes are widely observed in practice, we believe that 

experimental design strategies for such processes, with the consideration of real constraints, 

deserve more attention in future research. 
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Appendix A: R Code for Analyzing the Wafer Rinse Example 

#real data 

response=c(0.11,0.13,-0.65,0.47,-0.10,-0.26,0.89,-0.15,0.25,-0.32,0.61,5.64,1.01,1.47,0.40,-0.01) 

x1=c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1) 

x2=c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1) 

x3=c(-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1) 

x4=c(-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1) 

waferdata=data.frame(response=response, x1=x1,x2=x2,x3=x3,x4=x4) 

   

#analyze as a factorial design 

model1=lm(response~x1+x2+x3+x4+x1:x3+x1:x4+x2:x3+x2:x4,data=waferdata) 

 

#remove insignificant two-factor interactions 

model1=lm(response~x1+x2+x3+x4,data=waferdata) 

summary(model1) 

 

#analyze as a split-plot design 

library(nlme) 

K=x1+2*x2 

model2=lme(response~x1+x2+x3+x4+x1:x3+x1:x4+x2:x3+x2:x4,data=waferdata, random=~1|K) 

 

#remove insignificant two-factor interactions 

model2=lme(response~x1+x2+x3+x4,data=waferdata, random=~1|K) 

summary(model2) 

 

#analyze as a multistage split-plot design 

library(nlme) 

K=x1+2*x2 

model3=lme(response~x1+x2+x3+x4+x1:x3+x1:x4+x2:x3+x2:x4,data=waferdata, 

random=list(K=pdDiag(~x3+x4))) 

 

#remove insignificant two-factor interactions 

model3=lme(response~x1+x2+x3+x4,data=waferdata, random=list(K=pdDiag(~x3+x4))) 

summary(model3) 

Appendix B: Model Summary Generated from the Wafer Rinse Example 

#summary of model 1 
Coefficients: 

            Estimate Std. Error t value   Pr(>|t|)   
(Intercept)   0.5931     0.2997   1.979   0.0734 
x1           -0.1869     0.2997  -0.624   0.5456   

x2            0.5381     0.2997   1.796   0.1000   
x3           -0.5281     0.2997  -1.762   0.1057   
x4           -0.6206     0.2997  -2.071   0.0627 

 
#summary of model 2 
Linear mixed-effects model fit by REML 

 Data: waferdata  
       AIC      BIC    logLik 
  63.06708 65.85234 -24.53354 

 
Random effects: 
Formula: ~1 | K 

         (Intercept) Residual 
StdDev: 5.760578e-05 1.198714 
 

Fixed effects: response ~ x1 + x2 + x3 + x4  
                Value Std.Error DF    t-value  p-value 
(Intercept)  0.593125 0.2996785 10  1.9792043  0.0760 

x1          -0.186875 0.2996785  1 -0.6235849  0.6450 
x2           0.538125 0.2996785  1  1.7956743  0.3235 
x3          -0.528125 0.2996785 10 -1.7623052  0.1085 

x4          -0.620625 0.2996785 10 -2.0709693  0.0652 
 

#summary of model 3 

Linear mixed-effects model fit by REML 
Data: waferdata  
       AIC      BIC    logLik 

  66.97258 70.55364 -24.48629 
 
Random effects: 

Formula: ~x3 + x4 | K 
Structure: Diagonal 
         (Intercept)        x3        x4 Residual 

StdDev: 7.146907e-05 0.1202379 0.3381592 1.138594 
 
Fixed effects: response ~ x1 + x2 + x3 + x4  

                Value Std.Error DF    t-value  p-value 
(Intercept)  0.593125 0.2846485 10  2.0837101  0.0638 
x1          -0.186875 0.2846485  1 -0.6565114  0.6302 

x2           0.538125 0.2846485  1  1.8904894  0.3097 
x3          -0.528125 0.2909279 10 -1.8153121  0.0995 
x4          -0.620625 0.3310781 10 -1.8745578  0.0903 
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